How Does the GTO RHINO® Operate?

- Liquid enters the pump via the suction line (Yellow) of the specially designed, interchangeable distribution manifold, passes the mechanical seal (the mechanical seal is only under suction pressure), and enters the rotor cover where it is accelerated to a speed identical to the rotor speed creating a liquid ring.

- The liquid ring travels at the same peripheral speed as the rotor increasing pressure and rotational velocity.

- The stationary, wing-shaped Pitot tube is placed inside the rotor and has a circular opening located close to the inside of the rotor.

- This Pitot tube has a double function:
 1) The liquid enters the Pitot tube openings at the periphery of the rotating rotor. This is where pressure and velocity are the greatest.

 2) As the liquid enters the Pitot tube (Red) much of its kinetic energy is converted into pressure energy by the internal shape of the Pitot tube. Using this operating principle, relatively high pressures can be obtained in a single stage process.

- The pump generates a pulsation free flow and has a stable NPSHr curve.
Features

• **Large Sight Glass.** Bull’s-eye sight glass 1-1/4” simplifies oil level and oil condition monitoring that is critical to bearing life.

• **Powder Coated Oil Sump Lining.** Fusion Bonded Polyester process- TGIC designed to remove impurities in the castings and applied to the interior surface of the power frame oil sump that provides an impenetrable barrier between the iron frame and the oil, enhancing the long-term quality and cleanliness of the lubricating oil.

• **Magnetic Drain Plug.** A safety feature designed to magnetically collect damaging metallic contaminants away from the bearings.

• **Heavy-Duty Shaft Bearings.** X-Life Precision Bearings have extremely high reliability and extend bearing life with added benefits of smooth running, noise reduction, and reduced energy consumption.

• **Monitoring Locations.** Power frame has bearing monitor feature to allow RTD insertion for bearing temperature monitoring and optional areas can be added for vibration monitoring.

• **Powder Coated Power Frame.** Fusion Bonded Polyester process- TGIC designed to remove impurities in the castings and applied to the entire surface of the power frame. This process allows casing to be chemical resistant and the coating will not blister, soften, lose bond or discolor. Our Powder Coating Process resists salt spray, weathering, and humidity.

Available Option

• **Inpro® Labyrinth Oil Seals.** High quality oil seals keep outside environmental contaminants from entering the lubrication media, greatly extending bearing life.

The GTO RHINO® has the above features PLUS:

• Meets API 610 Standards

• Heavy Duty Power Frame

• Higher Operating Speeds / Pressures

• Two Year Power Frame Warranty

• Mechanical Seal Options & Flush Plans

• CE Compliant
Sample Application

Boilerfeed water pump
Q=110GPM/25m3/hr
TDH= 3937 ft/1200 mtrs
Temp= 356F/180C
RPM= 5800

120 Bar
1740 PSI
Standard Materials of Construction

<table>
<thead>
<tr>
<th>Description</th>
<th>Code 1 DI</th>
<th>Code 2 SS</th>
<th>Code 3 CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor</td>
<td>Ductile Iron</td>
<td>Stainless Steel A351-CF8M</td>
<td>CD4 MCU ASTM A890 Grade 1A/1B</td>
</tr>
<tr>
<td>Rotor Cover</td>
<td>65-45-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitot Tube</td>
<td></td>
<td>Stainless Steel A351-CF8M</td>
<td></td>
</tr>
<tr>
<td>2" X 2" NPT Manifold</td>
<td>Ductile Iron</td>
<td>Stainless Steel A351-CF8M</td>
<td>Stainless Steel A351-CF8M</td>
</tr>
<tr>
<td>3" X 2" NPT and flanged Manifold</td>
<td>Carbon Steel A216 WCB GS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Hub</td>
<td>Stainless Steel AlSi 316</td>
<td></td>
<td>Duplex Steel</td>
</tr>
<tr>
<td>Seal Plate</td>
<td>(not applicable on 2" X 2" screwed manifold)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestal Rotor Casing</td>
<td>Ductile Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65-45-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Bell</td>
<td>Steel A-105 St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>High Tensile, Low Alloy Carbon Steel A576- 4140 HT 42 CrMo4V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O Rings</td>
<td>Viton® is standard O-ring material but Teflon® and Kalrez® are available as options</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Other materials are available on request
Viton®, Teflon® and Kalrez® are registered Trademarks of E.I. DuPont

Technical Data

- **Capacity:** 400-GPM (90 m³/h) maximum
- **Delivery Head:** 6200 FT (1900 meters) liquid column maximum
- **Casing Pressure:** 2300-PSI (160 BarG) maximum
- **Pump Speed:** 6800 RPM maximum
- **Temperature:** 392°F (200°C) maximum
- **Materials:** Ductile Iron, Stainless Steel, Cast Steel, CDMCu, and Hastelloy
- **Shaft Seal:** Mechanical Seal only sees suction pressure
- **Connections:** 1500 lbs. or DIN up to 250 BarG
- **Rotation:** Counter clockwise facing shaft
- **Standards:** API 610 8th Edition with exceptions
The **GTO RHINO®** has been developed for low flow, high pressure applications. The Pitot tube design produces a stable, pulsation free flow. The ability to operate with low minimum flow makes the pump suitable for a wide variety of applications, within its performance envelope.

The **GTO RHINO®** is used in a wide range of industries including:

- Chemical and Petro-chemical-boiler feed
- Refinery Service
- Carbon Black Feed Stock
- Pharmaceutical plants
- Power Generation
- Dust Suppression
- Paper mills-trim squirt and showers
- Steel mills-descaling
- Reverse osmosis in plants and offshore
- Poultry and food processing plants-central cleaning systems
- Environmental

The **GTO RHINO®** is used for cleaning, descaling, reactor feed, boiler feed, transport and process duties, system pressurization, and spraying systems.
Complies with the essential health and safety requirements of the ‘Machinery Directive’ and conforms to the relevant standards, listed below:

Directives:

Harmonized Standards:

BS EN 809:1998 – Pumps and pump units for liquids - Common safety requirements
BS EN 60204-1:2006 - Safety of Machinery – Electrical Equipment of machines
- Part 1: General Requirements
BS EN ISO 12100-1:2003 Safety of Machinery - Basic concepts, general principles for design
- Part 1: Basic Terminology, Methodology
BS EN ISO 12100-2:2003 Safety of Machinery - Basic concepts, general principles for design
- Part 2: Technical Principles
BS EN ISO 13857:2006 – Safety Distances to prevent Hazard Zones being reached to prevent by upper and lower limbs
BS EN 349:1993 Safety of Machinery - Minimum gaps to avoid crushing parts of the human body

For pumps supplied without motors:

It is hereby certified that this equipment is intended to be incorporated into, or assembled with other machinery to constitute relevant machinery to comply with the essential health and safety requirements of the ‘Council Directive’ 98/37/EC and 2006/42/EC ‘Machinery Directive’.

The machinery covered by this declaration must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the provisions of Directive 98/37/EC and 2006/42/EC ‘The Machinery Directive’ and any other applicable Directives.